My contact person
e-chains®, chainflex®, cables, harnessed systems readychain®

+381 11 63 098 17
Photo
dry-tech® bearing technology

+381 11 63 098 17
Photo
Simple and quick
prototype production

Plastic gears printed in 3D for charging system for electric cars

Profile

  • What was needed: Plastic gears for prototypes
  • Manufacturing process: igus® 3D printing service
  • Requirements: Wear resistance, robustness, fast delivery
  • Material: iglidur® I6
  • Industry: Automotive
  • Success for the customer: Time savings through simple online configuration and fast delivery, elimination of tooling costs, variety of options

Easelink, a company from Graz, has developed "Matrix Charging", a charging system consisting of two components. A charging pad connected to the mains is installed in the car park. A connector on the bottom of the e-car drops down when parked over the pad. The charging process starts automatically, without the driver having to connect a cable – similar to inductive charging, but with up to ten times the charging power and with 99 percent efficiency. During the development process, the designers created a production-ready component through several prototypes. In order to keep the expenses as low as possible and still enable high quality, they used the igus® 3D printing service.

Time and cost savings with the igus® 3D printing service

The future should be in e-mobility. Only the electric cars could not prevail so far. An important factor is the insufficiently developed charging infrastructure. For many drivers, the available recharging facilities are very rare. Easelink wants to change this. The innovative start-up has developed 'Matrix Charging', a vehicle charging system consisting of two components: A charging pad connected to the mains is installed in the car park. A connector on the bottom of the e-car drops down when parked over the pad. The charging process starts automatically, without the driver having to connect a cable – similar to inductive charging, but with up to ten times the charging power and with 99 percent efficiency. During the development process, the designers created a production-ready component through several prototypes. If costs and time get out of hand during this phase, prototyping can become a stumbling block. But Easelink skilfully manufactured the components. They used the 3D printer to make the gears in the mechanism of each of the connector prototypes.

Matrix Charger with gears printed in 3D made of iglidur® material together with an electric car  

Configured quickly online

An online gear design for the igus® 3D printing service takes about 60 seconds. The delivery then takes place from 24 hours. Unlike gears manufactured with industrial printers and are ready to ship after up to 3 days. "In prototype construction, high flexibility and fast delivery times are crucial," says Hermann Stockinger, Easelink founder. "It is precisely these factors that we appreciate - to quickly select and print gears in many variations via the igus online configurator." “
 
Another advantage, along with the unbeatable time savings, is the cost-effectiveness of igus® service, since all tooling costs are eliminated. The designer only needs to select the gear module, and set the number of teeth and the torque transmission. The configurator creates a 3D model of the gear, the basis for 3D printing. Hundreds of variants of single and double gears can be created without using computer-aided design (CAD) software.

Matrix Charger with gears printed in 3D made of iglidur® material  

iglidur® I6 for high wear resistance

The most suitable material for gears is the iglidur I6. The high-performance plastic withstands ambient temperatures of -40 to +80 degrees Celsius, is pressure-resistant up to 44 MPa and has a high wear resistance. It was proven in laboratory tests that it is significantly more robust than the classic plastic polyoxymethylene (POM). Here, gears were operated at 12 revolutions per minute (RPM) and loaded with 5 Nm torque. The result: The 3D printed gear made of iglidur I6 was still fully functional after a million cycles, and the wear hardly measurable. Unlike a machined gear made from POM. It was worn out after 321,000 cycles and broke down after 621,000 cycles.

Further application reports

Custom-made component made using the igus® 3D print service

Inspired by the Formula 1, the student teams of the "Formula Student Germany" construction competition compete with each other. For constructing their racing cars, the Formula Student Team from Weingarten near Ravensburg needed customised plastic pinions, among other things. With the 3D print service by igus®, these components were not only produced quickly, but also made of wear-resistant iglidur® material.

Printed in 3D: maintenance-free gripper for the packaging industry

Fast availability at a low price and use under hygienic conditions were important prerequisites for this 3D-printed gripper. It is used to package cosmetic products and has the special advantage of working without additional lubrication, hence fulfilling hygienic requirements.

Printed in 3D: customised plain bearing ready for collection within hours

What do you do when an important replacement part for an exhibit suddenly goes missing on the way to the trade fair? The response of the Berlin-based company Blackcam, a manufacturer of camera motion systems, is to turn to the igus 3D printing service.

Made of bar stock: individual iglidur® component for melting probe

The "IceMole" is a melting probe, with which the polar regions, glaciers and as a long-term objective extraterrestrial regions are to be explored. For storing the ice screw, a component was needed that is water- and dirt-resistant and  thermally insulated. Therefore, a bearing is used that was made of iglidur® A180 bar stock.

Made by injection moulding: Polymer bearings in mountain bikes with spring-loaded rear wheels

In the area of full-suspension mountain bikes from Bergamont "ConTrail MGN" is one of the top models. At the dropouts of the rear suspension, lightweight iglidur polymer plain bearings from igus are used for heavy duty applications.  Naturally, the bikes often run through watercourses and puddles, and they are often cleaned after use with the garden hose or even with a high-pressure cleaner. These loads also do not affect the polymer plain bearings.

Here, you can find the products used:
Here you can find further interesting applications from very different areas of use